Search results for " Wharton’s jelly"
showing 5 items of 5 documents
Recent Advances in Derivation of Functional Hepatocytes from Placental Stem Cells
2013
Abstract: End-stage liver diseases are one of the leading causes of death in the world. Often orthotopic liver transplantation represents the final therapeutic choice. The limits of this approach are the scarcity of donor livers available, and the many side effects related to the administration of immune suppressants to the patients. Cellular therapy for liver diseases is increasingly being viewed as a promising strategy to provide hepatocytes to replenish the parenchymal cells of the organ. This technique suffers of some important limitations, such as the difficulty in isolating sufficient cell numbers (e.g. when adult or foetal hepatocytes are used for transplantation), the limited viabil…
Recent patents and advances on isolation and cellular therapy applications of mesenchymal stem cells from human umbilical cord Wharton's jelly
2011
In recent years, important advances were made to clarify the biology and potential use of mesenchymal stem cells (MSC) in the therapy of a number of disorders. MSC are present in a number of tissues, ranging from adult bone marrow, to several adult organs, adipose tissue and, in the last years, the fetal-associated (also named as extraembryonic) tissues (e.g. placenta, amniotic membrane, umbilical cord). In particular, research on cells derived from mature umbilical cord, a tissue which is still discarded at birth, showed that mesenchymal stem cells can be successfully isolated from the Wharton’s jelly (WJ), the main constituent of this organ. This review will take in to account the patents…
Perinatal and Wharton's jelly-derived mesenchymal stem cells in cartilage regenerative medicine and tissue engineering strategies
2011
Stem cells can be found in embryonic and extraembryonic tissues as well as in adult organs. In particular, research in the last few years has delineated the key features of perinatal stem cells derived from fetus-associated tissues. These cells show multiple differentiation potential, can be easily expanded ex vivo, and raise no ethical concerns as regards their use. Several reports indicate that cells isolated from Wharton's jelly (WJ), the main component of umbilical cord extracellular matrix, are multipotent stem cells that express markers shared by other mesenchymal stem cells (MSC) and give rise to different mature cell types belonging to all three germ layers. Moreover, WJ-MSC display…
Immune-related molecole are espresse by both naive and differentiated Wharton’s jelly mesenchymal stem cells: a new avenue for cellular therapy
2012
Wharton’s Jelly Mesenchymal Stem Cells as Candidates for Beta Cells Regeneration: Extending the Differentiative and Immunomodulatory Benefits of Adul…
2010
Mesenchymal stem cells (MSC) are uniquely capable of crossing germinative layers borders (i.e. are able to differentiate towards ectoderm-, mesoderm- and endoderm-derived cytotypes) and are viewed as promising cells for regenerative medicine approaches in several diseases. Type I diabetes therapy should potentially benefit from such differentiated cells: the search for alternatives to organ/islet transplantation strategies via stem cells differentiation is an ongoing task, significant goals having been achieved in most experimental settings (e.g. insulin production and euglycaemia restoration), though caution is still needed to ensure safe and durable effects in vivo. MSC are obtainable in …